

Adaptation d'impédance et mesure de signaux RF

Impedance Matching and RF Signal Measurement

Erik V. Johnson LPICM-CNRS, Ecole Polytechnique

Why do I need impedance matching?

- RF generators/amplifiers need to « see » their own characteristic impedance to :
 - Enable maximum power transfer (efficiently use amplifier)
 - Minimize back-reflected power (possibly damage amplifier)
- Plasma reactors are far from 50Ω
 - CCPs appear as large capacitors in series with small resistance
 - ICPs look like inductors

Outline

- Impedance Matching
 - Smith Chart
 - Using Smith Chart to understand matchboxes
- Practical Matchbox
 - Identifying components
 - Changing matchbox performance
- RF Signal Measurement
 - Useful measurements
 - How to interpret

The Smith Chart

Maps imaginary numbers onto a series of circles.

For us, these are electrical impedances and admittances.

Normalized to the characteristic impedance Z_0 (normally 50 or 100 ohm), $z=Z/Z_0$

Handy property:

inverting number (y=1/z) is just a reflection through the origin.

Alim-Plasma 🤤 🕫

Orléans, 1-3 avril 2019

Each component has a frequency dependent impedance and admittance.

2=JωL Y=1/jωL

Z=R Y=1/R

Can also map combinations of components

All possible inductors

All possible resistors

All possible capacitors

Adjusting reactor impedance

Orléans, 1-3 avril 2019

Initial reactor impedance is far from 1 (the origin)

Adding components in series and parallel to the reactor changes the position on the Smith chart.

Circuit for Frequency Matching

- Tune circuit is typically an inductor with a variable capacitor
- Load circuit is a varicap (with fixed capacitors in parallel)
- It is harder to fabricate a variable inductor.

Adjusting reactor impedance

There is an important arc on the Smith chart: normalized impedances that, when flipped into admittances, have a real part (conductance) of unity and a negative imaginary part (susceptance).

1/z=1-jb

If adjusting tune circuit cannot get reactor onto this arc, it cannot be matched.

Alim-Plasma 🖙 🕫

Different Layouts

- So far, I have shown the L (or gamma) configuration
- Could also be used backwards for high resistance loads
- Only one solution for matching (so bandwidth is predetermined)
- Pi or T configurations give greater design control over bandwidth

Outline

- Impedance Matching
 - Smith Chart
 - Using Smith Chart to understand matchboxes
- Practical Matchbox
 - Identifying components
 - Changing matchbox performance
- RF Signal Measurement
 - Useful measurements
 - How to interpret

Strap to adjust inductance

ADC 433

Stold HECH

V_{DC} measurement?

Cooling water for inductance

MICENS-000-060376 MICENS-00-000-08034 PICENS

.

Modifying components - Tune

At higher frequencies, system reactance will get less negative.

Z=jwL in Tune will get bigger, may make matching impossible

Will want to reduce value of L (strapping)

Modifying components - Load

Less resistive reactors will require a higher Y=jB in the load branch to get to the origin

Y=jwC, so a larger value of C

We can add in those fixed capacitors

LPICM-CNRS, Ecole Polytechnique

Why is this one a vacuum capacitor?

MICSVE-600-0603776 50-5009F 513479 7143-71A

6

8

And this one can be air?

HEC HTS0 HEC HTS0 III HEC HTS 120PF ± 5% 50PF±5% 50PF±5% 7.5KVD0 M 7.5KVD0 NTM 7.5KVD0

NDC N

Stout HEOH

Overvoltage

On amplifier side, voltage and current are in phase and give a certain power On chamber side, they are almost out of phase – much higher voltage for similar power Due to counterpropagating waves after matchbox Magnitude of voltage on plasma side is much larger than on generator side

Outline

- Impedance Matching
 - Smith Chart
 - Using Smith Chart to understand matchboxes
- Practical Matchbox
 - Identifying components
 - Changing matchbox performance
- RF Signal Measurement
 - Useful measurements
 - How to interpret

RF Signal Measurement

Information at input of matchbox typically provided by amplifier/power source (coupled power).

Accurate, but incorrect

Does not account for losses in the matchbox/cables/feedthroughs.

Measurement close to plasma can be more valuable

RF Signal Measurement

If cable is low-loss, power measurements can be the same everywhere on reactor side

On reactor side, a large standing wave is present.

Values of current and voltage can depend strongly on position.

Closer to the electrode is better.

SOLAYL Probe

Shape of external conductor results in capacitive and inductive pickups.

Generates two signals proportional to the derivative of the current and voltage.

Data provided by SOLAYL Vigilant

Data provided by SOLAYL Vigilant

Conclusion

- Impedance Matching
 - Smith Chart helps to understand matchboxes
- Practical Matchbox
 - Identifying components
 - Changing matchbox performance
- RF Signal Measurement
 - Useful measurements
 - How to interpret

